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Recent experimental study of a granular gas fluidized by vibrations in a low gravity environment has
reported that the collision frequency �P of the particles with the container boundary scales roughly like N� with
�=0.6±0.1, where N is the number of particles. Using numerical simulations, we show that this scaling is
observed on a wide range of N, both for �P and for the particle-particle collision frequency �c. Simple scaling
arguments show that this behavior is related to the energy flux in the granular gas, from injection by the
moving boundary to dissipation by inelastic collisions. We predict in the dilute limit that the collision frequen-
cies scale such as �N are in fair agreement with experimental measurements.
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A granular gas, i.e., a collection of macroscopic particles
fluidized by vibration, is one of the elementary examples of
granular flows. Each collision between particles being inelas-
tic, a continuous input of energy is required to reach an out
of equilibrium stationary regime. This is usually achieved by
vibrating the bottom boundary of the container. Several ex-
periments have been performed to study the dependence of
the granular temperature �i.e., the kinetic energy per particle�
or the pressure on the vibration parameters, the velocity sta-
tistics of the particles, the density profile of the gas, and the
formation of clusters of particles �1�. A type of measurement
has been recently performed. Instead of looking at bulk prop-
erties, the collision frequency �P of the particles with the
container boundary has been recorded for a dilute granular
gas fluidized by vibrations in a low gravity environment �2�.
It has been found that �P�VN� with �=0.6±0.1, where V
=A� is the vibration velocity �of amplitude A and angular
frequency ��. The linear dependence on V results from the
existence of only one time scale in a low gravity experiment,
the period of vibration 2� /�. The dependence on N is more
puzzling. It strongly differs from the case of a molecular gas,
for which it is linear. We show here that this is confirmed by
numerical simulations which give ��0.5 on a wider range
of N than the experimentally studied one. In addition, the
particle-particle collision frequency per particle, �c, displays
a similar scaling law. This traces back to the energy flux
budget in the granular gas, from injected power by the mov-
ing boundary to dissipated one by inelastic collisions. We
thus show that this scaling law is related to the dissipative
nature of collisions and understand it with a simple model in
the limit of a low density granular gas.

A two-dimensional �2D� granular gas is simulated with an
event driven molecular dynamics method �3�. N disks of
mass m and diameter d are enclosed in a square box of size
L. Energy input is provided by one vibrating wall with a
symmetric sawtooth motion, y= ±Vt, of period T=2� /�.
Particle rotation is neglected in our simulations. We take m,
d, and T, respectively, as unit of mass, length, and time. In
these units, we take V=6. As in most previous studies,

particle-wall collisions are elastic whereas inelastic binary
collisions between particles are modeled with a constant res-
titution coefficient r, where r is the ratio between precolli-
sional and postcollisional normal relative velocities. We take
L=100d and increase the particle number from N=2 to N
=600. Thus, we have for the mean particle density, n0
=N /L2, 0.0004�n0�0.02, for the number of particle layers
at rest, nc=Nd /L, 0.02�nc�6, and for the mean free path
l0=1/ �2�2n0d� corresponding to n0, 0.06L� l0�18L.

As in experiments �2�, we record the collision frequency
�P of the particles with the boundary �y=L�, opposite to the
vibrating one. We also record the collision frequency �c of
one particle with the others for r=0.95, r=0.9, and r=0.8.
The first value corresponds to the experiments performed
with steel spheres �2�. The numerical results for the collision
frequencies �P and �c for the different values of r can be
collapsed on single curves for N not too large if we plot
�P

�1−r2 and �c
�1−r2 versus N. This is displayed in Fig. 1.

We observe that �P��N in agreement with experimental

*Corresponding author. Email address: fauve@lps.ens.fr

FIG. 1. Collision frequency, �P, of the particles with the upper
boundary, times �1−r2 with r=0.95 ���, r=0.9 � ��, and r=0.8 ���
as a function of the number of particles N. Collision frequency, �c,
of a particle with other particles, times �1−r2 with r=0.95 ���, r
=0.9 � ��, and r=0.8 ���. Full lines with slope 1/2.
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measurements and similarly that �c��N, on nearly two de-
cades for r=0.95 and r=0.9. The lower limit of this behavior
is roughly N�10 particles. Velocities become larger and
larger �and anisotropic� in the limit of small N. Thus, despite
the small probability of collision between particles, the gas
dissipates enough power to reach a statistically stationary
regime. The mean density profile along the y axis, perpen-
dicular to the vibrating boundary, stays roughly constant up
to N�100 particles with the realistic values of r that are
considered. When N is increased further, the y dependence of
the mean density cannot be neglected anymore, such that the
mean free path l between binary collisions can be large com-
pared to the diameter d of particles close to the moving
boundary whereas it becomes smaller than d far from away
�4�. This strong inhomogeneity is characteristic of granular
gas and results from energy dissipation. The granular
medium becomes cooler and thus denser, far from the mov-
ing boundary which provides energy �5�. The resulting inho-
mogeneity increases when the volume is increased at con-
stant density, thus in the thermodynamic limit �4�. The upper
limit of the scaling behavior we observe roughly corresponds
to the clustering instability leading to a nonhomogeneous
density profile also along the direction perpendicular to the
energy flux, i.e., the x axis �6�. This occurs for a smaller
value of N when r is decreased. The limit of the range of
validity of the scaling for large N is clearly observed for r
=0.8 in Fig. 1. The collision frequencies abruptly increase as
soon as a cluster develops close to one of the upper corners
of the container. However, we emphasize that it is remark-
able to observe a scaling behavior even when the density of
the granular gas becomes strongly nonhomogeneous along
the axis parallel to the energy flux as long as no clustering
instability occurs.

The mean power �I� injected by the moving boundary into
the granular gas is related to the collision frequency with the
boundary �P and the granular temperature �E� /N whereas the
mean dissipated power �D� is related to �c and �E� /N. �E� /N
and �I� /N are shown in Fig. 2. We observe that they do not
display any scaling law with respect to N on a range compa-
rable to the one of Fig. 1.

�E� and �I�= �D� both increase with N for N small and
then decrease for N large. They reach their maximum for
different values of N as can be understood as follows. The
relation between �D�, �E�, and �c can be obtained by observ-
ing that an amount of energy �1−r2��E� /N is on average lost
at each binary collision. Thus, one expects for the mean dis-
sipated power,

�D� � �1 − r2��E��c. �1�

Since �E�, �D�, and �c all depend on N and �c increases with
N, it follows from �1� that �E� reaches its maximum before
�I� or �D� reach their maximum when N is increased.

We emphasize that fluctuations are neglected in �1�, so the
accuracy of this estimate should be checked. Figure 3 shows
that Eq. �1� is fairly accurate when N is not too large, the
constant of proportionality being close to 1. We also observe
that a similar relation holds for the collision frequency �P
with the boundary, which we will comment on below. As in
Fig. 1, we observe that the upper limit of validity of the
scaling law decreases to smaller N when r is decreased.

In order to go further, we need to evaluate the injected
power �I�. This has been addressed in several papers, with or
without gravity �7–10�. It is a difficult problem, first because
it requires the knowledge of the probability density function
�PDF� of the velocity of the particles, which do not display a
universal shape for granular gas, in particular close to the
moving boundary. Second, even if an approximate PDF is
chosen, one should also know how the colliding particle ve-
locity and the motion of the boundary are correlated �or not�.
A way to eliminate this problem is to consider an asymmetric
sawtooth driving with ascending motion of the piston at ve-
locity V and infinitely rapid descending motion. Thus, all
particles collide with the boundary with velocity +V, and it
has been shown that the scaling �I�� pLV where p is the
pressure at the boundary is very accurate �8�. Then, assuming
p� �E� /L2, gives �I��V�E� /L. It is rather difficult to achieve
such a motion experimentally and a more realistic approxi-

FIG. 2. Granular temperature �E� /N as a function of N for r
=0.95 ���, r=0.9 � ��, and r=0.8 ���. Full line of slope −1. Mean
injected power per particle, �I� /N, as a function of N for r=0.95
���, r=0.9 � ��, and r=0.8 ���. Full line of slope −1/2.

FIG. 3. Normalized collision frequency, �c�1−r2��E� / �D� as a
function of N for r=0.95 ���, r=0.9 � ��, and r=0.8 ���. Normal-
ized collition frequency, �P�1−r2��E� / �I� as a function of N for r
=0.95 ���, r=0.9 � ��, and r=0.8 ���.
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mation to the roughly sinusoidal driving used most of the
time is a symmetric sawtooth forcing. The above scaling or a
slightly modified one can be still valid if the root mean
square particle velocity vrms is small compared to V. How-
ever, for a dilute granular gas with r�1, we can have vrms
�V �11�, such that the probabilities of collision with the
piston at velocities ±V become nearly equal. Then, the coef-
ficient of the linear term in V vanishes in the mean injected
power �I� �7,9�. This remains true for all symmetrical exci-
tations including sinusoidal vibration. We get �I��mV2�P,
with �P�n�0�Lvrms where n�0� is the density of particles
close to the moving boundary. Thus, if we assume that the
density is roughly homogeneous in the dilute limit �n�0�
�n0�, we get

�I� � C1mV2n0Lvrms, �2�

where C1 is a numerical constant. We also have in this limit
�c�C2n0dvrms, where C2 is another numerical constant. For
an homogeneous isotropic and Gaussian velocity distribu-
tion, we have C1=1/4 and C2=2�2. We do not expect quan-
titative agreement with these values in our numerical simu-
lations. Even if nonhomogeneity can be taken into account to
some extent by replacing n0 by a local density n�y�, devia-
tions from isotropy and from a Gaussian distribution are ex-
pected for a granular gas and modify the numerical values of
C1 and C2.

Then, using �1� and �2�, and n0=N /L2, vrms=�2�E� /mN,
we get

�E� �
C1

C2

mV2

1 − r2

L

d
, �3�

�I� = �D� � C1�2C1

C2

mV3

�1 − r2

�N
�Ld

, �4�

and

�c �
C2

C1

d

L
�P � �2C1C2�d

L

V

L�1 − r2
�N . �5�

The scaling laws displayed in Fig. 1, �1−r2�P��N and
�1−r2�c��N, are thus explained with our simple model.
The scaling with respect to the particle number results form
the dissipative nature of the collisions, as emphasized by the
following argument: taking into account only quantities
varying on N, all the other parameters being fixed, we have
�P��c�Nvrms���E�N, in molecular as well as in granular
gases. In molecular gases, �E��N, thus we get the classical
result �P��c�N. In granular gases, �E� is determined by the
energy budget, �E�� �I� / �1−r2��c��P / �1−r2��c=const.
Thus, we get �P��c��N. This emphasizes that a granular
gas driven by a vibrating boundary is very different from a
molecular gas in contact with a heat bath.

The model also predicts that the granular temperature
�E� /N scales like 1/N whereas the flux of energy per particle
�I� /N= �D� /N scales like 1/�N, in reasonable agreement
with Fig. 2 in an intermediate range of N. Their dependence

on the restitution coefficient r is also well described since
numerical data obtained for r=0.95, r=0.9, and r=0.8 col-
lapse on a single curve provided that �1−r2��E� �respec-
tively, ��1−r2��I�� is plotted �see Fig. 2�. However, the data
obtained for r=0.8 show that the range of N for which this
collapse is observed becomes smaller when r is decreased.
Finally, the orders of magnitude of �E� and �I� are correctly
estimated. If one compares �P /�c=C1L /C2d with simula-
tions which give a ratio roughly equal to 20 in the range
where the scaling law for the collisions frequencies is ob-
served �see Fig. 3�, we get C2�5C1. This gives for r=0.95,
�E��7000 instead of numerically computed values of order
8000 in the intermediate range of N.

This simple model has obvious limitations both for small
and large N. The velocity distribution becomes strongly an-
isotropic for small N �ten particles or less�. Not surprisingly,
the component along the vibration axis has tails involving
larger velocities than the perpendicular component. This ex-
plains why �E� decreases by 25% when N is decreased from
25 to five particles, instead of staying constant as predicted
by the model. On the other side, the particle density becomes
nonhomogeneous along the vibration axis when N becomes
too large �typically N	100, i.e., more than one layer of par-
ticles at rest, for the values of r used in our study�. We
emphasize that the validity of our model relies on the as-
sumption of homogeneous density and velocity distribution
and that deviations from it at large N or small r are due to the
failure of this assumption. We also stress that the granular
gas is never in a hydrodynamic regime within the parameter
range of our study. For small N �say N=25� the density is
homogeneous within 10% but the mean free path is compa-
rable to the system size. For large N �say N=300�, the den-
sity is nonhomogeneous and the mean free path varies by a
factor 10 �roughly from 0.5L to 0.05L� from the vicinity of
the piston to the opposite boundary.

Finally, instead of changing N at constant volume, as done
above, it is instructive to consider the behavior of the granu-
lar temperature �E� /N when N is increased at constant mean
density n0. Eq. �3� shows that

�E�
�N

=
C1

C2

mV2

1 − r2

1
�n0d

, �6�

thus �E� is not extensive. The granular gas behaves as if the
effective number of degrees of freedom were Nf ��N in fair
agreement with the numerical simulations of Ref. �4�. A simi-
lar qualitative behavior has been recently found using a hy-
drodynamical description �12�. However, this approximation
is not valid in our simulations, as already mentioned above.

Despite its limitations, it is remarkable that our simple
model captures the correct scaling law for collision frequen-
cies, observed both in numerical simulations and in experi-
ments, and also describes correctly energy flux in the dilute
regime.
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